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Metrics Methods WX200 Panda UR5e Bolt Solo PhantomX Allegro OP3 Mean ± Std

CD ↓ Reart [2] 9.33 18.81 15.86 10.39 11.14 14.73 6.38 44.95 16.45 ± 12.18
Ours 7.49 13.56 12.84 8.41 9.77 10.88 5.80 8.30 9.63 ± 2.67

TED ↓
MBS [1] 3.33 5.00 3.40 3.80 4.40 14.60 8.60 10.00 6.64 ± 4.07
Reart [2] 0.83 2.40 4.40 3.20 4.00 13.00 6.00 11.60 5.68± 4.37
Ours 0.33 1.40 0.60 1.75 0.00 4.00 4.00 6.00 2.26 ± 2.16

Background:
▪ Robot Self-Modeling: Existing methods rely on both visual data and control 

signals (e.g., IMU, joint angles), limiting generality.
▪ Articulated Object Modeling: Prior work targets on simple structurs (e.g., 

laptops, drawers) with a small number of DoF, while real robots are more 
complex, multi-branched, and serially linked.

Our Work:
▪ AutoURDF reconstructs complete robot description files (e.g., URDF links, 

joints, and connections) directly from point cloud videos, without using motor 
signals or labels.

▪ We validate our method across a diverse range of robots, including both 
synthetic and real-world data.

Figure 1. Overview.

Figure 2. Real-world demo, comparing predicted and ground-truth URDFs.

Figure 3. Point cluster registration and part segmentation.

Figure 4. Topology inference.

Figure 5. Mesh reconstruction.

Figure 6. Silhouette Score method experiment.

Figure 8. Qualitative results for the core stages of AutoURDF.

Figure 7. Comparison of registration and segmentation.

Table 1. Baseline comparision: quantitative results.

Registration and Segmentation:
▪ We designed a shared PE-MLP model for registration. The 

Step Model registers point clusters from time step t to the 
ground truth at t+1, the Anchor Model registers clusters 
from the first time step to the ground truth at t+1.

▪ The point cluster coordinates X combines Cartesian 
coordinates x and quaternion orientation q. The correlation 
matrix encodes pairwise motion similarity, computed as 
the Euclidean and Geodesic distance over their 6-DoF 
trajectories. For each cluster pair:

Topology and Joint Parameters:
▪ MST (Minimum Spanning Tree): A graph constructed over 

cluster centers using summed positional distances.
▪ The optimal number of parts is determined maximizing the 

silhouette score over the motion correlation matrix.
▪ Joint esitmation: For each parent-child pair of links’ SE(3) 

transformation is constrained to 1-DoF joint motions, 
parametered as a fixed point, rotation axis, and angle.

Point Cloud to Mesh:
▪ Sparse point clouds from each time step are integrated in 

the local frame to form a dense point cloud, which is then  
converted into a watertight mesh.

Degrees of Freedom Prediction:
▪ An experiment shows the Silhouette Score is used to 

identify the number of distinct moving parts and thus 
predict the degrees of freedom (DoF) for a bipedal robot.

▪ Our method does not require knowledge of forward 
kinematics and number DoF.

Baseline Comparison:
▪ The validation dataset includes a variety of robots, 

including robotic arms (e.g., WidowX-200) and legged 
robots (e.g., PhantomX), with DoF ranging from 5 to 18.

▪ We compare our method with MultibodySync (MBS) [1] 
and Reart [2], in terms of point registration and topology 
estimation accuracy, and also present qualitative results 
across multiple stages of our pipeline. CD is the L1 
Chamfer Distance, and TED is the tree editing distance.

Conclusion:
▪ We present an unsupervised approach for constructing 

simulation-ready robot description files, URDFs, from point 
cloud data.

▪ Our approach produces accurate point cloud registration 
and topology estimation, offering a scalable and efficient 
solution for automated robot modeling.

▪ Limitations: Our method is based on randomly sampled, 
collision-free motion data, it does not capture dynamic 
parameters such as mass or inertia.
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General Idea:
▪ Our approach performs registration and segmentation on a sparse set of point clusters. We assume that multibody motion 

can be represented as the movement of smaller rigid bodies, in our method, the initialized K-means clusters. 
▪ Through analyzing cluster movements, we hierarchically address the following challenges: (1) moving part segmentation, (2) 

body topology inference, and (3) joint parameter estimation, ultimately enabling URDF generation.


