
AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames

Using Cluster Registration

Supplementary Material

Overview. The supplementary material is structured into the
following sections:

• Data Collection A: This section describes the synthetic data gen-
eration process and real-world datasets used for evaluating the
proposed method;

• Method Details B: This section provides a detailed explanation
of the topology inference algorithm, model architecture, and
comparison between pose representations;

• Additional Experiments C: This section presents experiments
analyzing the impact of varying frames, cameras, clusters, noise,
and parameters, along with supplementary visualization results.

A. Data Collection

A.1. Synthetic Data

We simulate the robots and point cloud scanning process with Py-
bullet [9]. The robot is controlled by randomly sampled motor
angle sequences, and the corresponding point cloud frames are
captured during this process. In the simulation, we collect 5 video
sequences per robot, with each video containing 10 frames of point
cloud data. To simulate real-world conditions, random positional
noise and per-point noise are added to the point cloud data. In the
experimental results presented in the main text, we combine 20
camera views into a single frame point cloud to create dense point
cloud. Figure 12 illustrates the process of generating a single-
frame point cloud from three views of depth images.

To ensure the point cloud sequence captures sufficient motion
information, we independently sample random targets within the
motor angle limits for each motor. Additionally, if the robot de-
tects a self-collision, the sequence is restarted with a new set of
target motor angles. Randomly sampled data may include simi-
lar rotational motions, making it challenging to identify distinct
parts. Our method can merge multiple random motion sequences,
improving the kinematics inference accuracy.

A.2. Real-world Data

As shown in Figure 13, we conducted real-world experiments us-
ing 10 consecutive point cloud scans of a WX200 robot arm, con-
trolling all five motors. The robot was operated through a ROS2
interface, following a randomly sampled motor angle sequence.

Point cloud data was collected using an iPhone camera and the
iOS scanning application Scanverse [34]. A bounding box was
applied to isolate the robot arm’s point cloud from the environ-
ment. Despite the real scan data containing misaligned coordi-
nates across time-steps and significant surface noise, our method
directly processes the raw point cloud data, achieving accurate
segmentation and URDF generation.

+ Position Noise

+ Point Noise

Down sampling

View 1 View 2 View 3

Figure 12. Synthetic data collection. One frame of synthetic data
is collected by merging multi-view depth maps into a single-point
cloud. Global coordinate noise and per-point noise are applied to
simulate realistic conditions. This image shows an example of a
point cloud created from three depth images.

Bounding Box

Down sampling

Extract Point Cloud

Multi View Images 3D-GS Scene

Point Cloud Frame

Figure 13. Real-world data collection. For each motion step, we
capture a video of the robot arm, reconstruct the 3D scene using
a 3D Gaussian splatting application [17, 34], and extract the point
cloud. A bounding box removes background points, and down-
sampling standardizes the number of points.

DoF: 3
SS: 0.47

DoF: 4
SS: 0.57

DoF: 5
SS: 0.58

DoF: 7
SS: 0.60

DoF: 8
SS: 0.58

DoF: 6
SS: 0.65

Figure 14. Silhouette Score Method. An example of using the Silhouette Score method to identify distinct moving parts and predict the
degrees of freedom (DoF) for the Bolt bipedal robot, with a peak score at DoF = 6. This indicates that segmenting the point clusters into
seven parts provides the optimal grouping.

B. Method Details

B.1. Silhouette Score Method for Part Segmentation

Figure 14 illustrates an example of using the Silhouette Score [46]
method to identify the number of links. With DoF ranging from
3 to 8, the averaged Silhouette Score peaks at DoF = 6, which
is the correct prediction for the Bolt robot. Given the number of
groups for the segmentation algorithm, the Silhouette Score and
Coefficient are calculated as equation 4 and equation 5.

SS(i) =
b(i)→ a(i)

max(a(i), b(i))
(4)

SC = max
k

1
S

∑

i

SS(i) (5)

In Equation 4, SS(i) denotes the Silhouette Score of the i-th node,
which, in our case, is a point cluster. The term a(i) represents
the average distance of the i-th node to all other nodes within the
same group, while b(i) represents the average distance to nodes
in the nearest group. The distance is calculated using Equation 3.
SC(i) is the Silhouette Coefficient, which depends on the number
of groups, k. S represents the total number of nodes. To determine
the optimal number of groups for segmentation, we maximize the
average Silhouette Score over all groups.

B.2. Topology Inference

As shown in Algorithm 2, topology inference is divided into three
main stages to construct the body topology graph G. In the first
stage, the algorithm identifies connected components from the
segmentation graph Gseg , grouping clusters into link components
{Ic}. For each component, it determines its neighboring compo-
nents using the Minimum Spanning Tree Gmst, identifying clus-
ters that are directly connected, and therefore the corresponding
groups of direct connection. A dictionary is created for each link,
containing a unique identifier (Id), a parent link initially set to
None, and a list of connected link IDs. These dictionaries are
stored in the list Links for further processing. In the second stage,
the kinematic tree structure is derived by iteratively traversing the

links. Starting with the root link, which is chosen as the first link
sorted by ascending center movements, child links are identified
by excluding their parent link from the list of connected links. The
algorithm updates the parent-child relationships and adds the child
links to the next layer for processing. This process continues layer
by layer until all links are processed. In the final stage, the body
topology graph G = (I, E) is constructed, where I is the set of
link IDs, and E consists of directed edges representing parent-
child relationships.

B.3. Model Architecture

Figure 15 shows the architecture of the registration model. We
use a shared neural network to predict incremental updates to the
position and rotation of each point cluster. The input dimensions
align with the pose representation of the point clusters. A sinu-
soidal positional encoder enhances the network’s ability to cap-
ture spatial relationships and patterns[48]. The model includes a
fully connected encoder and separate decoders for rotation and po-
sition. The network’s output is added to the input coordinates to
learn incremental updates directly. We use PyTorch [38] to im-
plement the model and optimization is performed using the Adam
optimizer[18].

The same model architecture is applied to both the Step Model
and the Anchor Model, with learning rates of 0.0001 and 0.00005,
respectively. The training loss is calculated using the L1 Cham-
fer distance between the transformed point cloud and the ground
truth. An early stopping mechanism halts optimization if the point
cloud error does not decrease after a set number of steps, ensuring
efficient training.

B.4. Rotation Representation

To efficiently and robustly learn the rotation of clusters To opti-
mize the learning of inter-frame cluster rotations in our registration
model, we investigate the efficacy of three rotation representations:
Euler Angles, Quaternions, and 6D Rotation representations [54].
We conduct extensive experiments across ten diverse sequences,
comparing these representations regarding their training stability
and convergence properties. As shown in 16, both Quaternions

Algorithm 2 Topology Inference
Input: Segmentation Gseg , MST Gmst

Output: Body Topology G
Initialize: Links → EmptyList
Initialize: Ic = connected components(Gseg)
where Ic is a list of cluster indices {Ic}
// 1. Construct a list of link dictionaries
for (Il, {Ic}) in enumerate(Ic)

Find connected clusters
for Ic in {Ic}
{Ic connected} → Gmst.neighbors(Ic)

end for

Find connected links {Il connected} with {Ic connected}
Build dictionary: Link = {

Id: Il;
parent: None;
connected links: {Il connected}}

Links.append(Link)
end for

Sort links by center movements in ascending order
// 2. Derive the kinematic tree
Initialize: current layer = [links[0]] // root
repeat

Initialize next layer → ↑, child set → ↑
for Linkcurrent in current layer do

if Linkcurrent has parent then

child → connected links excluding parent
else

child → connected links
end if

for Linkchild in child do

Update Linkchild.parent → Linkcurrent.Id
Add Linkchild to next layer

end for

Update child set → child set ↓ child
end for

Update current layer → next layer
until child set = ↑
// 3. Build G from Links
G = (I, E)
where I = {Link.Id}, E = {(Link.parent,Link.Id)}

and 6D Rotation representations demonstrate superior robustness
as the angular step size increases from 4° to 10°. The empirical
results suggest that these continuous representations maintain con-
sistent performance even under larger rotational variations, while
Euler Angles show increased instability at higher angles. This
aligns with previous findings regarding the advantages of contin-
uous rotation representations in deep learning frameworks. Based
on these results, our implementation supports both Quaternion and
6D Rotation representations, with Quaternion as the default con-
figuration.

Le
ak

y
R

eL
U

PE
 (5

6)

In
pu

t (
7)

Xi
t

O
ut

pu
t (

7)

Xi
t+1

En
co

de
r

FC
-L

ay
er

 (5
12

)

D
ec

od
er

 1
FC

 (2
56

)

Po
si

tio
n

(3
)

Position

D
ec

od
er

 2
FC

 (5
12

)

R
ot

at
io

n
(4

)

Rotation

Q
ua

te
rn

io
n

XY
Z

Le
ak

y
R

eL
U

Le
ak

y
R

eL
U

Figure 15. Registration Model Architecture. We developed a
lightweight neural network for point cluster registration, employ-
ing the same model architecture for both the Step Model and An-
chor Model.

Figure 16. Training Loss Comparison of Rotation Representa-

tions Across Step Sizes.

C. Additional Results

C.1. Experiment on Number of Input Sequences

The Multi-Sequence Merging Experiment presented in our main
text compares the performance of our method using a single se-
quence of point cloud frames against five sequences of point
cloud frames. The results indicate that Our method achieves im-
proved performance in 7 out of 8 robots for both repose evaluation
and joint distance evaluation while demonstrating improvements
across all robots for joint angle evaluation. Additionally, Figure 17
provides a qualitative comparison. With data from five sequences,
our method generates segmentations with higher distinction, creat-
ing more edges within the correct group of point clusters, as exem-
plified in the UR5 robot. Furthermore, it achieves higher accuracy
in joint estimation and reposed point cloud generation.

With the starting motor configurations aligned across different
sequences, our method merges multiple sequences by registering
them to the same set of point clusters and averaging the resulting
motion correlation matrices. We perform the repose comparison
by repeating the synthetic point cloud collection process (Figure
12) using a new set of random motor configurations applied to
both the predicted and ground-truth URDFs.

Segmentation Joints Repose

Pred GT

1
Se

qu
en

ce
5

Se
qu

en
ce

s
1

Se
qu

en
ce

5
Se

qu
en

ce
s

Figure 17. Qualitative Comparison on Different Number of

Input Sequences.

C.2. Experiment on Number of Clusters

To investigate the sensitivity of our method to the quality and re-
finement level of initial clusters, we conduct extensive experiments
across robots with varying structural complexity. We evaluate each
robot configuration across eleven different cluster quantities, com-
paring against the Reart baseline [25]. As shown in 18, we ob-
serve that while optimal performance occurs at specific cluster
number ranges, our method consistently outperforms the baseline
(indicated by blue bars) across a wide range of parameter settings,
demonstrating the method’s stability across different robot archi-
tectures.

Evaluation across three robot configurations (WX200, Solo,
PhantomX) with varying structural complexity. Blue bars indicate
performance superior to Reart [25], shown as the dashed line.

C.3. Experiment on Occlusion and Noise

To evaluate the robustness of our algorithm in real-world condi-
tions, we tested it under varying levels of noise and occlusion by
adding Gaussian noise and limiting the number of camera views
(Fig. 19). The results show that our method outperforms Reart
[25] in highly noisy and occluded scenarios, in terms of moving
parts segmentation.

Figure 18. Impact of Cluster Number on Tree Edit Distance.

C.4. Experiment on PartNet-Mobility Dataset

We evaluate our AutoURDF framework on six common house-
hold articulated objects from the PartNet-Mobility dataset [32],
each featuring one or two degrees of freedom: laptop, trashcan,
toilet, dishwasher, faucet, and storage cabinet. As shown in 20,
we initialize each object in an open configuration to facilitate dis-
tinct part clustering. To enhance the initial segmentation of planar
components, we incorporate k-means clustering with normal infor-
mation from the point cloud. The framework demonstrates robust
performance in both segmentation and joint parameter estimation
for objects with predominantly planar structures. While the cylin-
drical geometry of the faucet presents challenges for precise seg-
mentation, the framework still maintains accurate joint axis pre-
diction, highlighting its robustness to partial segmentation errors.

1 Cam 2 Cam 3 Cam 4 Cam 24 mm 12 mm 6 mm 3 mm

Occlusion: Noise:

Jo
in

ts
Se

gm
en

ts

R
ea

rt

 & : Correctness

O
ur

s

Se
gm

en
ts

Figure 19. Impact of completeness and noise of input point cloud.

La
pt
op

Tr
as
hc
an

To
ile
t

D
is
hw

as
he

r
Fa

uc
et

St
or
ag

e

MST Segmentation Joints Mesh SimulationGT

Figure 20. Qualitative Results on PartNet-Mobility [32] Dataset.

MST Segmentation Joints Mesh Simulation
Pa

nd
as

U
R
5e

Bo
lt

So
lo

Ph
an
to
m
X

Al
le
gr
o

O
P3

GT
W
X2

00

Figure 21. Quantative Results on AutoURDF Dataset.

	. Introduction
	. Related Work
	. Methodology
	. Problem Formulation and Method Overview
	. Cluster Registration and Part Segmentation
	. Topology Inference
	. Joint Estimation
	. URDF Generation
	. Experiments
	. Experiments Setup
	. Qualitative Experiments
	. Quantitative Results and Ablation Study

	. Discussion and Conclusion
	. Data Collection
	. Synthetic Data
	. Real-world Data

	. Method Details
	. Silhouette Score Method for Part Segmentation
	. Topology Inference
	. Model Architecture
	. Rotation Representation

	. Additional Results
	. Experiment on Number of Input Sequences
	. Experiment on Number of Clusters
	. Experiment on Occlusion and Noise
	. Experiment on PartNet-Mobility Dataset

